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1 Introduction 

This document outlines some of the details of the software architecture of the high level code of 

the Gray Institute Open Microscopes. It starts with the prerequisite dependencies and how to 

compile the projects and moves on to describe the structure of the software and how modular 

components can be integrated to form a working system. Settings, configuration and initialisation 

files are also described followed by details of top level operations, such as the region scanning 

and time lapse functions. 

2 Building the Project 

2.1 Prerequisites 

• Microsoft Visual Studio – Currently known to work on VS Express 2008 (aka v. 9) 

• LabWindows/CVI 8.0.1 – CVI libraries are used as is the UIR editor. 

• Python - http://www.python.org/download/releases/2.5.4/   

• CMAKE - http://www.cmake.org/cmake/resources/software.html 

• An SVN Client such as TortoiseSVN - http://tortoisesvn.net/downloads 

2.2 Subversion (SVN) Code Repositories 

There are five repositories of code and libraries required to build our microscopy applications. 

They are: 

• ATD_Microscopy (https://subversion.assembla.com/svn/ATD_Microscopy/) contains a 

folder for each of our microscopy systems. Each system has a CMake build file and the 

correct configuration file (config.ini.in) for each system. The documentation for all the 

systems is contained in the Microscope Systems\Documents folder. ATD_Microscopy 

also contains a folder for Microscope Modules. These contain the code for the high level 

microscope functions, such region scan. 

• ATD_Applications (https://subversion.assembla.com/svn/ATD_Applications/) contains 

various utilities we have written. The only code used for the microscopes in this 

repository is IcsViewer which displays images acquired. 

• ATD_Hardware (https://subversion.assembla.com/svn/ATD_Hardware/) contains all the 

code for objects that abstract and implement our hardware devices. 

• ATD_Libraries (https://subversion.assembla.com/svn/ATD_Libraries/) various common 

libraries used by all of our code. 

• ATD_Dlls (https://subversion.assembla.com/svn/ATD_Dlls/) contains pre compiled dll’s 

and lib’s that are needed to compile and run the code. 

These repositories do not contain the code for all our individual modules the developer is 

expected to use CMake to generate a build file that references all the modules in 

ATD_Hardware, ATD_Applications and ATD_Libraries. 
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ATD_Hardware also has its own CMake file for building stand alone hardware modules that are 

not integrated into a larger program. 

The ATD_Microscopy top-level directory contains two directories "Microscope Modules" and 

"Microscope Systems". The "Microscope Modules" directory contains modules common to all 

our microscopes. This includes code to perform timelapse experiments and region scans. The 

"Microscope Systems" directory contains the folders for each of our systems. These are 

essentially directories containing only build files. There is a small amount of code in the 

MainApplication directory of each system that includes the main() method which creates and 

runs our microscope objects.  

There is one module in ATD_Microscopy called Dummy which is a dummy microscope that can 

be used for testing and development away from the microscope hardware. This is a system that is 

intended to fully test our microscope code where there is no hardware present. It should be able 

to be compiled on any computer and can test all of our higher level modules. 

ATD_Dlls should contain files for  

• FreeImage (http://freeimage.sourceforge.net/) 

• FreeImageAlgorithms - home grown image processing code built in FreeImage – 

(https://code.launchpad.net/~glennpierce/+junk/main, src in ATD_Libraries) 

• FreeImageICS – home grown code to load ics files into FreeImage structures (src in 

ATD_Libraries) 

• ImageViewer – Basic image display component of ICSViewer (src in ATD_Libraries) 

• StringUtils – home grown string utilities (src in ATD_Libraries) 

• Python and Python_d – natural and debug compiles of python 

 

And the path to ATD_Dlls\trunk should be placed in the path environment variable. 

2.3 Using CMAKE to Build a Visual Studio Project 

Our microscopy applications are ANSI c (Not labwindows dependant) and are provided with 

CMake build files. CMake is a tool which generates make files or IDE project files for a variety 

of tools.  In our case usually CMake is used to generate a visual studio project that then compiles 

these projects. 

To build the dummy microscope application you would perform the following steps. 

Checkout ATD_Applications, ATD_Hardware, ATD_Libraries, ATD_Microscopy into a 

directory. For us this is usually C:\Devel\ATD\ 

Check out ATD_Dlls and add C:\Devel\ATD\ATD_Dlls\trunk to the system path environment 

variable. 

Run cmake-gui from the windows start menu (see Figure 1). 

In the edit box that asks where the source code is, enter: C:\Devel\ATD\ATD_Microscopy\ 

Microscope Systems\Dummy\trunk (This is where the CMakeLists.txt file is). 
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For the edit box asking where to build the binaries enter: C:\Devel\ATD\ATD_Microscopy\ 

Microscope Systems\Dummy\trunk\build. (This could be anywhere but this is the convention). 

You can then press configure until all the red info messages turn to grey (locate directories or 

files if some are not found, if the convention is followed they are probably all found 

automatically). You then press generate and your build files will have been generated. 

To get rid of the red info messages you may need to specify the paths to the other three 

repositories. 

For ATD_Hardware this would be C:\Devel\ATD\ATD_Hardware 

For visual studio you can then go into 

C:\Devel\ATD\ATD_Microscopy\Microscope Systems\Dummy\trunk\build and open 

Dummy.sln. 

Remember in visual studio to right-click the project and select “Set as start up project” so that 

dummy runs when the play button is clicked. 
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Figure 1, Screenshot of CMAKE gui correctly configured to build the project. 

3 Hardware Setup 

We have mainly used ini files for storing hardware setup information. This was mainly due to the 

simplicity but also due to a CVI incompatibility. We originally used xml but the CVI xml library 

seems to use msxml4. However, some new libraries that use xml such as the Imperx lynx camera 

library use msxml5 and you can not link msxml4 and msxml5 into the same application without 

problems. 

Hardware configuration is held in 2 types of file. One file, config.ini, holds microscope wide 
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configuration necessary to communicate with the hardware and setup that should not change 

during use. The second type of file is also an ‘ini’ file, but there are many hardware specific ini 

files (and the occasional txt file) that hold settings for individual modules, the contents of which 

may change during use. 

3.1 The Config.ini File 

The config.ini file is created by CMAKE from the config.ini.in file as it contains computer 

specific paths. It is important to make any necessary changes to config.ini.in as well as config.ini 

(or just to config.ini.in and then rebuild the project). 

The software communicates with the main hardware through either RS232 COM port commands 

or native FTDI calls (D2XX). Most microscopes use the native call method but this has led to 

problems on some hardware (maybe due to conflicts with other connected hardware) and so 

some use the Virtual COM Port (VCP) for RS232 commands.  

Computers that use the native call method must have the serial number of the FTDI device in 

config.ini. The FTDI serial number can be obtained from one of the test programs that identifies 

the devices at startup and enters them into the drop down menu.  

It can also be obtained from the Device Manager in the Windows Control Panel. In Device 

Manager, open up the Universal Serial Bus Controllers tree. The device will be listed as a USB 

Serial Converter. Right-click on this and select Properties. On the Details tab, select Device 

Instance Id from the drop down menu. You will see a string of characters similar to 

“USB\VID_0403&PID_6001\ELBSAT12”. The serial number is the last 8 characters of this 

string (after the ‘\’). 

Use of the VCP requires that the VCP driver is loaded (see device manager for the USB Serial 

Converter) such that there is an entry in device manager under Ports (COM & LPT) for USB 

Serial Port (COM4), which indicates the COM port in use. Computers that use this method must 

have the COM port number entered in config.ini.  

Most config.ini files have both bits of information added for native or VCP use. The test 

programs for individual hardware components all use the VCP. 

3.2 Microscope Mode Configuration Files 

As well as per module configuration will have configuration data for the modes of the 

microscope. For example the software stores data for the fluorescence, bright field and laser 

scanning modes. This data configuration overrides any per module configuration.  There are 

menu items in the microscope code that allow the user to save all configuration data at that time 

or they can reset the data to default values. All this does is copy over the corresponding data file 

with the prefix “Default” to the current configuration. 

4 Code Structure 

We can now describe the architecture of the microscope software. The Microscopy applications 

are made up of a number of diverse modules which can control all the various forms of 

hardware. 
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4.1 Generic and Specific Module Architecture 

The majority of the microscopy application revolves around the microscope object. This object 

contains references to all the generic objects that make up a microscope. This includes objects 

like Camera, Stage and Cube Slider etc. As these are the generic objects the code in the 

microscope object should work with any implementation of a module. The Microscope object is 

itself intended to be inherited from. For example for “Abbe” we have an implementation 

AbbeMicroscope. This objects code creates all the specific module objects which represent 

specific hardware on the system (see Figure 2). 

Each of these modules derives from a common base object called UIModule (see below) that 

provides common functionality to all modules. The modules talk to one another by the use of 

signals (see below) which is a small C library that mimics events and call-backs in other 

languages. 

The entry point to the program is in Microscopy.c. This relatively small file is microscope 

specific and also handles the main user interface panel that has high level function and the ‘Exit’ 

button. The creation of module objects is always from the top down, but calling has to be done 

from the bottom up so the correct module for the specific objects are created, as follows: 

• The generic microscopy_app_new in Microscopy.c calls microscope_new of the specific 

microscope. 

• The specific microscope_new calls microscope_constructor for the generic 

microscope. 

• The generic microscope is created by microscope_constructor. 

• The specific microscope is then created by microscope_new which creates all the virtual 

methods required by the generic microscope (VTABLE). 

The specific microscope_new then creates all the required hardware objects for that microscope, 

again using the same method. 

• The specific microscope_new calls specific_hardware_new for the specific hardware 

item (e.g. ATD_cubesliderA_new, or dcam_camera_new). 

• The specific_hardware_new calls the constructor for the generic hardware type, 

hardware_constructor or hardware_new. 

• The generic hardware object is then created by hardware_constructor, including any 

generic user interface. 

• The specific hardware object is then created by specific_hardware_new, including any 

specific user interface (usually accessed by a ‘more’ or ‘settings’ button and the creation 

of all virtual methods (VTABLE) required by the generic object. 

Hardware initialisation then proceeds, the virtual specific method being called indirectly from 

microscopy_app_new before the user interface is allowed to run. Although some initialisation 

methods are threaded to allow simultaneous initialisation and some user interaction (enter user 

name etc.)  
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Figure 2, Microscope software architecture. The generic code modules remain the same for all 

microscopes (although different modules may be included or not on different microscopes) and 

the specific module code contains specific implementations for specific hardware devices. (ATD 

denotes Advanced Technology Development Group and relates to in-house built hardware 

described in other accompanying technical notes). 

 

In each of the hardware module there are a few virtual methods always defined. They are 

• Initialise 

• Hardware_initialise 

• Destroy 

The initialise method is used to setup any UI elements or reading configuration files. This could 
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also be done in the modules constructor. 

The hardware initialise method is solely for initialising hardware. This has its own method as this 

function is intended to be thread safe. Often our hardware initialisation takes place in a separate 

thread so please make sure you implementation is thread safe. 

The destroy method is there to provide any necessary cleanup like returning hardware to a safe 

shutdown state, closing files or freeing memory. 

4.2 Hardware module creation, initialization and the success dialog 

Each hardware module has a ‘_new’ function to setup the software object. The ‘new’ function is 

called first and sets up the table of virtual functions and signals for that module. These calls are 

made from the microscope_new function which is usually placed at the end of the specific 

microscope C file (e.g. AbbeMicroscope.c) and is a point of reference for all the modules 

required and created for the particular microscope. It ensures all code modules are created before 

any higher level modules can be created and any initialization takes place. 

Early in this process the user login panel is displayed. The purpose of this panel is to encourage 

users to supply some information for image metadata (future auditing procedures and databases 

such as OME will require experimenter and study information) and so the system can setup a 

directory structure for them, in the Microscope Data directory, in an attempt to keep data in one 

place on the host pc. This aids integration with any central storage or archiving server. 

Next a call to microscope_initialise is made. This is in the generic Microscope.c file. This 

calls in turn microscope_initilise_devices, microscope_load_ui and 

microscope_post_initialise. This displays the hardware initialization ‘success’ panel and 

calls the microscope specific initialise_hardware function which calls initialization functions 

for all the hardware (and some purely software) modules required for that microscope. Some of 

the initialization, such as for the camera, stage, cube slider and optical path switch occur in 

separate threads for speed as they can proceed in parallel.  

Then higher level modules such as region scan and time lapse that depend on other modules can 

be created. This is followed by user interface display and the manual hardware setup panel. This 

panel is to encourage users to check the hardware components that are not under computer 

control, and as such the computer cannot know the state of these devices. This information is 

also required for image metadata. Examples of manual components are the objective lens, the 

PMT and the laser scanning filter set. The panel shows the current setting in software and a 

shortcut button to display the UI for the relevant module for them to change if required. The 

manual hardware setup panel does not update when settings are changed and is intended as a user 

prompt at start up and should be closed after use (no harm will come if it is left open, it just may 

be confusing as it does not update with settings changes – a whole new section of connected 

signals would be required to update this panel, it has been seen as not worth the coding effort so 

far). 

Now we can start all timers that update the UI and set the microscope mode (Fluorescence or 

Brightfield etc.) and load the default settings for that mode. See the relevant section of this 

document for how the microscope settings for different modes are handled. 

microscope_post_initialise is used finally if there are some modules whose settings depend 
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on another part of the microscope. For instance, on the 90i microscopes (e.g. Zernike) the 

illumination apertures must be set for the given objective. Settings for these additional modules 

are loaded and set here according to other modules. 

4.3 UIModule  

Each module is intended to derive from an object called UIModule. This object provides 

methods that display, hide and close panels while remembering the size, position and last 

visibility status. The properties of size and position are stored in the registry for each panel. Note 

that although these properties are stored in the registry for the microscope code the positions of 

panels are re-read from the file that defines all the properties for a particular microscope mode 

i.e. Fluorescence mode. So in this case the registry entries won’t seem to take effect. Instead of 

using the CVI methods such as LoadPanel it is expected that the programmer uses the method 

ui_module_add_panel which allows all panels and their state to be kept track of. It also 
provides instance variable which keeps track of any signals that at module defines.  

This module allows the developer to search for resources such as uir files by name. To do this 

the module makes use of a file called resources.h which is created via the following method. The 

CMAKE script creates a file called resources.dat by searching all source folders for files of type 

"uir", "ico", "bmp" and "txt". A VS project called BuildResourceTable then takes this file and 

creates resources.h which is used in the main project. 

This file also lists the relative paths to the uir files used by the UIModule code. The reason for 

this is that labwindows sometimes had problems embedding the uir file into an executable, and 

indeed Visual Studio cannot embed the UIR files. When loading a uir from the uimodule code 

the search path is as follows. The directory containing the executable is first searched, if no uir 

file is found then all the directories in the system path are searched, if still no file is found the 

paths defined in the resources file are searched. This allows us to have a dll that uses uir files in 

the system path and this can be linked into our application without copying the uir file to 

multiple places. This also helps a lot when wrapping out code into another language.  

4.4 UILogger 

Each UIModule has a UI Logger module. This module allows any module to log errors or info to 

the user. The developer can specify whether the log message is critical or just information and 

the logger will deal with that in the appropriate way. The log function is also re-entrant and so 

can be used from different threads. As it would be a waste of resources for each module to 

instantiate a UI Logger object through the use of UIModule the UI Logger is reference counted. 

The first module in our microscope code that gets instantiated also creates a UILogger object and 

the reference count gets increment. Each subsequent module that uses the logger increments the 

reference count and reuses the same original logger. When the modules are destroyed the 

reference count is decremented. Only when the reference count goes to zero is the logger module 

destroyed. In addition to providing output to the user at runtime this module also writes the log to 

a text file. Each new run of the application results in a new log file with a unique identifier 

appended. If the log files are greater than three months old then they are deleted. 
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4.5 Exception Handler 

Since starting to use Visual Studio we have made used of the exception handler extension. By 

surrounding a section of critical code with ‘try’ and ‘catch’ blocks we can provide code to handle 

exceptional circumstances. 

This is a Visual Studio enhancement to C. We may wish to use C++ try and catch handlers on 

our code in the future as they are more feature full and portable. In our exception handle which 

surrounds all our code we write a stack trace and any details of the computer to disk. We also ask 

the user to email this to the developers. Note this does not work at the moment if an exception 

occurs from another thread other than the main one. Similar to the UI logger the stack trace files 

are written to an incremented file. 

4.6 XYStage and Z Drive Separation 

Originally we had an abstracted stage module that abstracted all stage functions including 

movement in the z direction (which some stages are able to perform). However, there tends to be 

more than one way to move in the z direction. For example, our microscopes have motor driven-

coarse and fine piezo-electric focus drives. To cope with all these z devices we created an 

XYStage module, removing the z movement. We also created a generic Zdrive object that we 

implement for all our devices. Of course if a microscope has more than one way to move in the z 

direction we still need to know which device to move. For this scenario with have a “master 

zdrive” object in our microscope. This object is the one that is used to perform focus moves.  

4.7 Modules 

The microscope code has many modules for various purposes, this semi-exhaustive list attempts 

to give brief details about some of them. 

• IcsViewer - Stand alone image viewer and can be used in a larger application for display 

of images. 

• ATD_UsbInterface - Defines methods used by our i2c communication protocol. 

• BatchCounter – Hardware module for batch counting fast events such as photon counting. 

• Camera – Hardware module that abstracts all of our cameras. 

• Cube Slider – Hardware module that abstracts and controls fluorescence cube changers. 

• DeviceFinder – Depreciated (superseded but still included for backwards compatibility) 

module used by the old standalone module code. Don’t use in microscope code. 

• HardwarePy – Module that wraps our microscope functions in a Python method. 

• Lamp – Hardware module used for all our light sources. 

• Microscope – This is a hardware module that provides a common interface to our 

individual microscopes systems and is also where individual microscope features are 

defined. If you were creating a new microscope you would start here. 

• MotorMike – Hardware module to control z axis lift for Surrey system. 
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• Objectives – Hardware module to control automatic objective changers. 

• OpticalLift – Hardware module to control optical Lift. 

• OpticalPath – Hardware module to control OpticalPath / Mirror Stepper. 

• Power Switch – Hardware module to abstract controllable power supplies. 

• Scanner – Hardware module used to control laser scanners. 

• Shutter – Hardware module to control shutters. 

• SPC – Module which defines  time resolved photon counting features. 

• Stage – Hardware module used to abstract stage controllers. 

• StepperMotor – A module to control a stepper motor. This module is not to be used 

directly. Currently it is used by the Optical Path module. 

• TemperatureMonitor – Hardware module used to monitor thermostats. 

• WhiteLight Laser – Hardware module that controls out white light laser. 

• ZDrive – Hardware abstraction for our ZDrive hardware. 

• CHARM – Image processing code for the segmentation of cell images. 

• CVI stubs – Code needed when including the CVI toolslib objects in Visual Studio. 

• DeviceListConfigModule – Common code that helps modules that save a list of devices. 

I.e. the cube manager and objectives. 

• Dictionary – Hash table implementation in C. 

• Excel Automation – Allows passing data to Excel. 

• Exception Handler – Module that invokes our own exception dialog and saves to text file. 

• FilePrefixSaveDialog – Module that asks the user for a file prefix when saving timelapse 

data and regionscan data. 

• FreeImageAlgorithms – Image processing library written by us. 

• FreeImageICS – Integrates ICS file support into FreeImage 

• GCI Registry – Allows one to save and read values to the registry. 

• GCI Utils – Various utility functions. 

• ImageViewer – Win32 image control for showing an image and providing zoom and 

panning. This is the control used in IcsViewer. 

• Password – Module that pops up a dialog for a password entry. Does not provide proper 

security but is suitable for stopping accidental configuration changes. 

• Profile – Module for measuring time spent in code for debugging. 

• Signals – A general call-back mechanism.  

• Status – A generic feedback dialog for the user. 
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• String Utils – Various string utility functions. 

• UIModule – A module that provides saving of UI properties and managing of multiple 

panels. 

 

5 Coding Methods 

5.1 Object Orientated C basics 

The vast majority of our software was written using the National Instruments CVI programming 

environment and is therefore ANSI C (C89 standard) compliant and uses the CVI GUI toolkit. 

As we are working in a C based environment we are unable to use built in language features for 

creating object orientated code. Fortunately, objected orientation is simply a means of arranging 

the code and can be simulated in C with a bit of work. It is worth it because it allows the 

interchange of like modules into the same microscope framework (i.e. a manual cube changer, 

the ATD cube slider and a Nikon cube turret can all offer the same API and so be 

interchangeable). 

To mimic objects in C we use structures and function pointers to implement object inheritance 

and polymorphism. In object orientation speak, inheritance is where one object can inherit from 

another. The object that inherits gains all the methods that the parent object had. It may also add 

any methods of its own or redefine any of the parent’s methods. The latter is known as 

polymorphism. 

For example let’s say we were to implement a simple object relationship of a circle inheriting 

from a shape object. The shape object defines the method Area. We are unable to implement this 

Area method as only a specific shape can have an area calculated. The shape object would be 

known as an abstract class in object orientated languages. In C we would create this relationship 

as: 

typedef struct _Shape Shape;  

typedef struct  

{  

    void (*Area) (Shape* shape);  

} ShapeVtbl;  

 

struct _Shape 

{  

  ShapeVtbl vtable;  

  // Any Shape instance variables can go here 
};  

 

// Circle Object 

typedef struct  

{  

    Shape parent;  

    // Any Circle instance variables can go here 

} Circle;  

 

// Defined method to create the object 

Shape* circle_new(void); 

The inheritance is replicated by always placing the direct parent object structure as the first 

variable of the derived object. When doing this in C, the structures are laid out in memory in this 

sequential order. I.e. any pointer to an instance of a Circle structure will also point to the Shape 

parent variable of the Circle struct. Thus when we wish to refer the shape instance variables 

when we have a pointer to a derived object such as a circle we can simply cast the pointer like: 
 

Shape *shape = (Shape *) circle; 



Microscopy Software Architecture  15 

 

This is legal as the pointers refer to the same memory location. 

The vtable variable is meant to contain function pointers to functions representing methods 

which are expected to be overridden.  In the above example the method 
 

void (*Area) (Shape* shape);  

is defined. The Circle object is expected to override this method by pointing this function pointer 

to its own implementation. 

This object orientation is very basic. There are no representations of classes and all instances 

share the same vtable which is strictly not necessary. To understand object orientation in C fully 

I recommend looking at the GTK library (www.gtk.org). 

In each new module we often define some convenience macros. As an example for the Lamp 

module we define the macros as: 
 

#define LAMP_VTABLE_PTR(ob, member) ((ob)->vtable.member) 

#define LAMP_VTABLE(ob, member) (*((ob)->vtable.member)) 

#define CHECK_LAMP_VTABLE_PTR(ob, member) if(LAMP_VTABLE_PTR(ob, member) == NULL) { \ 

    ui_module_send_error(UIMODULE_CAST(ob), "Lamp Error", "member not implemented"); \ 

    return LAMP_ERROR; \ 

}   

 

#define CALL_LAMP_VTABLE_PTR(ob, member) if( LAMP_VTABLE(ob, member)(ob) == LAMP_ERROR ) { \ 

    ui_module_send_error(UIMODULE_CAST(ob), "Lamp Error", "member failed");  \ 

    return LAMP_ERROR; \ 

} 

Here we have defined LAMP_VTABLE_PTR to return a pointer to the vtable function; 

LAMP_VTABLE returns the deference pointer; CHECK_LAMP_VTABLE_PTR checks to see 

if a particular vtable method has been implemented by a derived object, and finally 

CALL_LAMP_VTABLE_PTR executables the desired vtable method. If it fails then the error is 

sent to the user. 

5.2 Signals Between Modules 

To ease module and c-object communication a signal / call-back mechanism was developed 

which allows modules to send out signals without care for how many modules are listening (if 

any) and which types of module they are. In that way modules can communicate without having 

excessive dependencies – there is no consequence if there are no modules listening to the signals. 

This code allows a programmer to register a call-back function or function pointer that gets 

executed when a particular signal from another module is emitted. Below is an example of 

emitting a signal from module1 and receiving it is module2. This is simply a C implementation 

of the publish/subscribe or observer design pattern (http://en.wikipedia.org/wiki/ 

Observer_pattern). 

Such a mechanism is necessary in this environment if we are to allow for differing hardware 

arrangements. In this way a camera module can send a signal to a shutter module to open the 

shutter just before an image is to be acquired, without the camera code being dependant on the 

shutter code. Then the camera code need not be modified on a microscope that does not have a 

shutter present – the camera publishes the same signals on every microscope, there may or may 

not be any shutters that are subscribers to those signals. 

The following describes how the signal code should be used: 

1) The emitting module (module1) must be setup to signal to any listeners: 
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In module1.h 

Declare the prototype for the handler that is executed when a signal is emitted 

typedef void (*MODULE1_CHANGE_EVENT_HANDLER) (Module1* module1, int data1, void *data2); 

Declare the function that allows another module to connect to the signal with a handler 

int module1_signal_changed_handler_connect (Module1* module1,  MODULE1_CHANGE_EVENT_HANDLER handler, void 

*callback_data); 

 

In module1.c 

A marshaller function is required to marshal the data passed by the programmer to 

GCI_Signal_Emit to the callback function defined by the programmer who wishes 

connect to a signal. Only the programmer who is creating a signal knows the format that 

the call-back has to take, therefore they need to create a mashaller to pass data to this 

specific call-back definition. 

static int MODULE_PTR_INT_MARSHALLER (void *handler, void *callback_data, GCI_Signal_Arg* args) 

{ 

    typedef void (*HANDLER) (Module1*, int, void *); 

    HANDLER func; 

    assert(handler != NULL); 

    func = (HANDLER) handler; 

    func ( (Module1 *) args[0].void_ptr_data, (int) args[1].int_data, callback_data); 

    return SIGNAL_SUCCESS; 

} 

Create a new signal that uses the marshaller above. 

GCI_Signal_New (UIMODULE_SIGNAL_TABLE(module1), "ModuleChanged", MODULE_PTR_INT_MARSHALLER); 

Define the function that allows another module to connect to the signal with a handler. 

This will simply be a wrapper for GCI_Signal_Connect. 

int module1_signal_changed_handler_connect (Module1 *module1, MODULE1_CHANGE_EVENT_HANDLER *handler, void 

*callback_data) 

{ 

    if( GCI_Signal_Connect (UIMODULE_SIGNAL_TABLE(module1), "ModuleChanged", handler, callback_data) == SIGNAL_ERROR) { 

     return MODULE1_ERROR; 

    } 

    return MODULE1_SUCCESS;  

} 

To emit the signal to execute all the handlers in other modules you call 

GCI_Signal_Emit (UIMODULE_SIGNAL_TABLE(module1), "ModuleChanged", GCI_VOID_POINTER, module1, GCI_INT, int_data);  

 

2) When connecting a call-back to a signal the following needs to be carried out in the receiving 

module (module2). 

In module2.c 

Call the function to connect our handler, usually in the initialise function 

module1_signal_changed_handler_connect (microscope->module1, OnModule1Changed, microscope); 

The handler executed when signal is emitted 

static void OnModule1Changed (Module1* module1, int int_data, void *data) 

{ 

    Microscope* microscope = (Microscope*)data; 

    // Do Stuff based on the ptr to module1, int_data or microscope. 

} 
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5.3 DeviceListConfigModule 

There are some devices which have a reference to a DeviceListConfigModule module. This 

includes the fluorescence cube manager, objective manager and the optical path manager. This 

module allows other modules to manage a list of hardware items and their details. For example 

the cube manager manages a list of fluorescence cubes that has excitation and emission 

wavelengths. The deviceListConfigModule not only manages this list but it allows the user to 

select between hardware items are in use at any particular time. This allows us to ship a config 

listing all types of objectives or cubes and the user can simply select which device is present on a 

system. Internally the DeviceListConfigModule has two CVI List controls: one manages the 

items present/in use on a system and the other contains items that are not currently on the system. 

These lists contain Node objects which point to a specific structure such as a cube that the client 

developer defines. 

To use DeviceListConfigModule the client developer has to code two methods: 

save_node_as_ini_fmt and read_node_from_ini_fmt. These simply read a CMDeviceNode from 

an ini file or write a CMDeviceNode to an ini file. This includes filling in the specific item data 

that node->device points at. 

6 High-level Modules 

6.1 Microscope Modes  

Our microscope code allows the user to change the modes of the microscope. These modes are 

usually "Bright field", "Fluorescence" and "Laser Scanning". Not all systems will have all these 

modes. When the user changes mode the setting of the old mode are stored and reread when the 

user returns to this mode. These settings are the current value of any hardware and the positions 

and visibility of any user interface elements. The user can also save or restore settings for each 

mode manually by selecting load or save settings from the configuration menu. The user 

interface settings override any stored in the registry automatically by UI module. Defaults for 

each mode can be stored via the menus, these are loaded at start up. 

6.2 RegionScan 

RegionScan is a module that allows one to select a region on a sample and the code moves the 

camera over that region by moving the stage. A series of images are then built up which are the 

stitched together. This code works in a multi-threaded way. A thread safe queue is first set-up. 

This is a simple queue that allows elements to be added or removed from multiple threads. 

After this, an acquisition thread is created and run. This starts moving the stage and acquiring the 

data. Each frame acquired is stored with is position in the thread safe queue. When an element is 

added to the queue a resisted call-back in the main thread is called. At this point the acquired 

images and the positions can be removed from the queue and then processed. What we do is pass 

the position and image to the mosaic module which stitches the images together into a larger 

image and displays the result. 

The region scan module will acquire a mosaic of the sample by moving the stage in a raster-like 

pattern and stopping to acquire an image from the camera in steps of the field of view (minus 
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some small overlap), to build up a large image in tiles. This has been well described elsewhere
1
. 

Region Scan uses the Region Of Interest module to allow the definition of the region to be 

scanned and Stage Plate, Focal Plane and Mosaic Window modules. What is worth documenting 

is the specific sequence of events and threads that handle image acquisition and storage during 

the scan. 

After lots of setting up of the region to scan, the base filename to save to, the Mosaic Window to 

display an overview of progress and, if necessary, the map of found cells, all other timers that 

monitor various hardware components are stopped to dedicate resources to the region scan. Two 

threads are created: the acquisition thread (AT) and the processing thread (PT). They are linked 

by a CVI thread safe queue (TSQ), that is a first in first out queue that AT writes to and PT reads 

from. The TSQ will hold ‘tiles’ that have the image data and stage coordinates associated with 

them. 

The AT proceeds in a loop that calculates the stage coordinates of the next position and moves 

the stage there, waiting for it to stop, then calls gci_camera_get_image (see the section on 

camera triggering) which handles the timing of the shutter opening etc. and then places the tile in 

the TSQ. If the AT proceeds much faster than the PT such that a large number of tiles are in the 

queue, a small delay is added to slow down the AT. 

The PT proceeds in its own loop, checking that the AT is still running and then pulling tiles off 

the queue and performing background correction and cell finding if required. It then posts a 

windows message for the main thread to handle the UI by displaying the image in the main 

windows and placing a rescaled version of the image on the Mosaic Window. The image is also 

saved along with its metadata by the PT which can be the most time consuming part of the PT. 

The use of these queues in this way does mean that the image displayed on the user interface 

may not correspond to the image last acquired nor the image currently being processed. This can 

be a little confusing in development but the everyday user it not usually concerned by this. The 

advantage of this method is that the user interface is consistent in the update of all windows; the 

main image display should not be out of sync with the Mosaic Window for instance. As with 

most GUI libraries, we believe the CVI GUI library to not be thread safe and hence the need to 

post a windows message to the main thread for it to update the user interface, but it will do this 

when it can! 

6.3 Time-lapse 

The time-lapse code allows the users to define a number of points on a sample and then revisit 

those points and perform and action at each point. The revisiting and actions performed are 

defined by Python scripts. The microscope code has Python wrapper functions for the most 

important hardware functions and these can be called from the python scripts. 

Time-lapse script structure consists of three methods that are called plus the abort method. The 

timelapse module assumes the following methods are defined in each timelapse script. 

• OnAbort() - Called only if the user cancels the operation and is usually used to set a flag 
in the script for other methods to read and abort processing. 

• OnStart() -  OnStart is called once when the user presses start to begin the timelapse. 

• OnCycleStart() - Called once at the start of each cycle of points. Should contain at least 
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one call to  microscope.MicroscopeVisitPoints() to start the cycle. 

• OnNewPoint(x, y, z, position) - Called each time the stage moves to a new point. 

 

The microscope help documentation has a list of the possible calls that can be made from the 

scripts. 

6.4 Region of Interest 

The region of interest is a simple module which allows the user to select a region. This module is 

used from a few different higher level modules. The region scan and stage scan both use this to 

ask the user to select a defined region on a sample. The module provides different means to set a 

region. The user can specify the top left and right bottom corners or they can specify a width and 

height. In the old microscopy code for cell finding there was also means for specifying a centre 

point and a radius for defining a cell dish region.  

6.5 Real-time Overview 

The Real-time Overview (RTO) helps in navigating the sample by forming a rough, low 

resolution, mosaic image of the sample from all the images acquired by the camera. The user can 

use this overview image as a map of where they have already viewed making it easy to revisit 

these areas. 

This module works by subscribing to the pre- and post-capture signals issued by the camera 

module. The post-capture signal tells us that a new image has been acquired; this is then copied 

at a low resolution and pasted into the overview window. The motorised stage position is also 

recorded on the pre- and post-capture signals; some weighted average of these gives the location 

at which the image was acquired as so the position at which to paste in the new image. 

If the camera is left in live mode while the RTO is running then a map of the sample is built as 

the stage is moved around. Depending on the stage speed and camera shutter speed these images 

may be blurred by motion but they do give an indication of the sample structure none the less. 

The user will usually dwell over interesting areas, thus recording good images of these areas. 

Images that are out of focus usually form reasonable images when re-sampled to a low resolution 

for the map. 

6.6 Stage Scan 

The Stage Scan module is designed to give the user a rough overview picture of the complete 

slide or plate on the stage. Since we have opted to only allow one objective lens, using images 

with different fields of view to navigate the sample is not an option, this module offers a map of 

the sample to navigate. The downside is that it may take several minutes to scan the complete 

plate by moving the stage. 

This feature uses the RTO (above) but in an automated way. The stage is programmed to move 

in a raster pattern across the plate so that it is completely covered rather than have the user move 

it around. To speed things up the camera is placed in its fastest mode (highest binning mode) 

with high gain and circa 5 ms exposure. The stage moves at a speed, pre-calculated to move as 
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fast as possible but to minimise gaps between images. In future we may implement some 

feedback of the framing rate and adapt the stage speed to that (in some cases, such as during a 

routine virus scan, that PC may not be able to achieve its usual framing rate). 

The Region of Interest module is used to select the scanned region but it is not necessary to set 

the focal plane as (again) images that are out of focus usually form reasonable images when re-

sampled to a low resolution for the map. 

6.7 Stage Plates 

The Stage Plates module is designed to store information about the various plates or slides the 

may be used on the microscope to allow, for example, the automatic generation of points for the 

time-lapse module to visit every well on the plate and for the setting of safe regions on the stage. 

The types and arrangements of plates and slides that can be used are determined by the stage 

insert. The user must tell the software what type of plate and or insert is in use via the Stage Plate 

module. The module is based on a Device Module selector. 

6.8 Single Photo Counting (SPC) operation 

This module is not available on all microscopes, currently Abbe, Galileo and Hooke have it. 

Time resolved acquisition is implemented using Time Correlated Single Photon Counting 

(TCSPC) and exploiting the Becker & Hickl (bh) SPC 830 board. The ATD microscopy code 

interfaces directly to this board via its SDK and the spcm32.dll, using the spcm32.lib and 

Spcm_def.h files during compilation. We currently use a limited set of functions of this board, 

using it in “Scan sync in mode” mode to acquire an 3D (x, y, time) image of accumulated counts 

in each time bin. The number of time bins being set by the ADC resolution. 

The total accumulated image of counts in each bin is usually acquired in sections. The size of 

these sections depends on how often the user wants an image to be displayed to show the 

progress of the acquisition. Sections will consist of a number of scanned frames. The first 

scanned frame is always displayed. A number of frames may then be acquired until the next time 

to display is reached. 

There is a complication in acquiring a number of frames with the SPC830 board. It cannot be 

told to acquire a certain number of frames and then stop. It must be given a time to acquire for in 

seconds. This time has to be calculated, and this is done by the scanner code (since it knows the 

scanner speed and resolution etc.). The time to acquire for, or collection time, is given by: 

 collection_time = (frames-1) * spc->_frame_time + 0.1; 

It must be just long enough to get into the last frame, the board will wait for end of last frame. A 

suitable time-out at twice the frame time times the number of frames is also calculated. 

The code performs the following actions for each image or image section: 

• SPC_enable_sequencer 

• SPC_start_measurement 

• SPC_set_parameters – read all params form the ui and send to the board. 

• scanner_start_scan – start the scanners to scan the laser for the required number of 

frames. 
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• Wait for the board to finish acquiring using SPC_test_state. 

• SPC_stop_measurement - If the scan completes successfully then the scanners will stop 

when the frames are complete. 

The total acquisition time of photon collection is not the total acquisition time since time will be 

taken displaying the image and restarting the scanners when necessary. The actual acquisition 

time is read from the board using SPC_get_time_from_start. 

 

 

6.8.1 SPC User Interface 

Under normal imaging use the user interface controls have the following functions.  

“Acq Limit” sets how the duration of the total scan is determined. Either by a number of frames 

or by a time in seconds. If the number of frames is set, the total acquisition time is seconds is 

calculated for the user. 

“Repeat every” is a basic time-lapse function that will repeat the scan at given intervals. This has 

been superseded by the scripted time-lapse module. Associated with that is “Autosave” that will 

automatically save the image after acquisition. 

“Display every” set how often the SPC intensity image will be displayed in the imaging window. 

The actual time used may differ from this value as it will be a whole number of frames. 

“Accumulate” will cause the signal counts to be accumulated between acquisitions. 

“ADC Resolution” set the number of time bins in the time-resolved measurement period. 

The “Time window” function chooses some of these bins when making the SPC intensity image. 

1 2 3 

4 
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This does not affect the saved data.  

“Acquire” will start the acquisition of the number of frames. 

“Live Acquire” will repeatedly acquire one frame (regardless of the setting of Acq Limit) and 

display it. 

“Scope” puts the board into oscilloscope mode such that it no longer records the x,y coordinate 

from the scanners and presents a 1D time-resolved signal trace. The scanner can scan when in 

this mode causing the trace to change as the laser is scanned across the sample, or be parked 

using the Zoom control. 

At all times, Panel 2 shows the signal rates at different stages of single photon counting. The 

SYNC shows the laser repetition rate. The ADC rate shows the signal at the final counting stage 

and should not exceed 10
5
 Hz to avoid pulse pile up effects. 

The operation in “scope” mode for acquiring prompt (instrument response) traces. 

6.8.2 Scanner 

Zoom, speed and resolution set the appropriate parameter on the scanner module. 

If the scanner zoom is changed from x1, the user is presented with a cached x1 image with a red 

box on it so that the user can choose the centre of the zoomed region (if there is no cached x1 

image, the user is asked if they want to acquire one immediately). Similarly, if the Zoom control 

is set to park, an image with a cross hair is presented such that the park position can be chosen. 

The resolution control has an interplay with the ADC resolution control (below) as the total 

memory requirement in bytes is set by X pixels x Y pixels x ADC resolution x 2 (16 bit number) 

and this must not exceed the memory of the board (32 Mbytes for the SPC 830 board). If the 

memory use is exceeded or non-optimal, Panel 3 above is displayed for the user to choose 

appropriate action.    

6.9 Camera triggering via signals 

There are several signals tied to the function of getting and image from the camera that handle 

the interplay with other hardware. On these microscope systems the decision was made to always 

operate the camera in a hardware triggered mode as on some cameras the performance differed 

when software triggering was used (this may relate to the old ImperX camera we tried). The 

hardware trigger comes from the shutter module that controls the epi-illumination (Fluorescence 

lamp). In Fluorescence (FL) mode this is straightforward, but in brightfield (BF) mode the 

shutter should not open as dia-illumination is being used. In BF mode, shutter module is placed 

in an “inhibit” mode, such that it still sends a hardware trigger to the camera but does not 

actually open the shutter. 

The code path is as follows (common to all microscopes but dcam calls are shown, microscopes 

with different cameras will have the relevant calls for that camera): 

gci_camera_snap_image 

logger_log – log that an image has been requested from the camera. 

GCI_ImagingWindow_SetFramesPerSecondIndicator – set indicator to 0 
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gci_camera_set_snap_mode 

 gci_camera_deactivate_grab_timer – stop the thread used in live mode 

 GCI_Signal_Emit "EnterSnapMode" 

  shutter_close – make sure shutter is closed 

  shutter_set_open_time – set to exposure time + 5.0 ms 

  gci_camera_set_trigger_mode – ensure EXTERNAL TRIGGER 

   logger_log – log that trigger mode requested 

   camera_set_trigger_mode – camera specific, dcam code shown 

    dcam_getstatus – check for IDLE, set IDLE if not so 

    dcam_freeframe 

dcam_getstatus – wait for STABLE 

dcam_settriggermode 

dcam_settriggerpolarity 

 camera_set_snap_mode – camera specific code, Hamamatsu dcam code shown 

  dcam_getstatus – check for IDLE, set IDLE if not so 

  dcam_freeframe 

dcam_getstatus – wait for STABLE 

dcam_precapture 

dcam_getstatus – wait for STABLE 

dcam_allocframe 

dcam_getstatus – wait for READY 

gci_camera_get_image 

 GCI_Signal_Emit "EnterGetImage" – used by real time overview (RTO) 

gci_camera_get_lock – get thread lock on camera 

 camera_get_image – camera specific code, dcam code shown, tried 3 times 

  dcam_idle – set IDLE 

  GCI_Signal_Emit "PreCapture" – open the shutter on 90i microscopes 

  dcam_capture 

  GCI_Signal_Emit "TriggerNow" – open the shutter, triggers camera 

  dcam_getstatus – wait for BUSY 

  dcam_wait – wait for CYCLE_END 

  GCI_Signal_Emit "PostCapture" – RTO 

  dcam_gettransferinfo 

  dcam_lockdata 
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  dcam_getdatasize 

LoadGreyScaleFIBFromArrayData – copy image to usable form 

dcam_unlockdata 

if camera_get_image failed 3 times do gci_camera_attempt_recovery, the 

camera specific code to try and restart/re-initialise the camera 

Flip or rotate the image if necessary 

GCI_Signal_Emit "ExitGetImage" – background correction 

gci_camera_release_lock – release the thread lock on the camera 

 

7 External Libraries 

7.1 FreeImageAlgorithms / FreeImageIcs 

All image processing functions, including the code internal image format, are based on the open 

source Free Image library (http://freeimage.sourceforge.net/). We have extended this library with 

the Free Image Algorithms library which includes many standard image processing functions. 

We have released this library under an open source licence. 

FreeImageAlgorithms and FreeImageIcs are written in C++ (Not labwindows dependant) and are 

provided with CMake build files. CMake is a tool which generates make files or IDE project 

files for a variety of tools.  In our case usually CMake is used to generate a visual studio project 

that then compiles these two projects into a dynamic link library which is included in our CVI 

project. 

These libraries have wrappers for other languages such as C# and were meant to be platform 

independent. Do not include any CVI functions or platform specific code into these libraries. 

7.2 Python  

Python is an interpreted scripting language that is very popular. One of its benefits is that it can 

easily be embedded within a C/C++ program. This allows one to extend the functionality of the 

C program with dynamic functions which allows the user to perform actions that the original 

program has not necessarily been designed to handle. In our case this is useful as we cannot 

predict exactly what actions an experimenter would wish to perform and designing for every 

possibility would quickly make the application overly complex and impossible to use for the 

user.  

We have two Python modules at the moment one defines a user interface for quickly running 

scripts and prototyping. It includes Python functions to perform actions on the user interface 

elements of the program i.e. it can be controlled to "Press a button". It also includes various 

functions to interact with CVI. Note that these CVI wrappers are intent ally limited. Originally a 

full CVI wrapper was written so that anything that CVI could do could have been done within 

Python. However, as this allowed one to bypass purchasing the CVI  development environment 

and National Instruments objected. Although this CVI wrapper (CVIPY) is present in the 
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repository we are not using it. 

The second module that includes Python calls is HardwarePY which is present in the 

ATD_Hardware repository. This defines the wrappers functions for the microscope module. 

These are the functions users with typically used to automate the microscope. Only when a 

particular method has not been implemented should the user resort to programmatically 

controlling user interface elements. 

Detailed documentation on embedding Python and writing wrapper functions is located in the 

python documentation (http://docs.python.org/extending). Usually adding a wrapping function to 

the code is easiest by copying a previous defined wrapper function that takes and returns the 

same number of arguments.  

7.3 External dll dependencies 

We use a number of external dlls in our code. Our accepted practice is to add 

C:\Devel\ATD\ATD_Dlls\trunk to the system path and place these dlls there. 

The dlls and descriptions are 

• Python25 and Python25_d - These are used as we embed the Python interpreter into our 

program. 

• LStep4.dll - Used for the LStep stage controller (Marzhauser)  

http://www.marzhauser.com/nc/en/service/downloads.html?0= 

• dcamapi.dll - Used for Hammamatsu DCam based cameras (Hammamatsu created these) 

• FreeImage.dll - An image abstraction library. (http://freeimage.sourceforge.net/) 

• freeimagealgorithms.dll - Our Image Processing Library based on FreeImage 

• FreeImageIcs.dll -A library written by us that manipulates ICS files and converts them 

for use in FreeImage 

• StringUtils.dll - Various simple string functions written by us. 

7.4 BasicWin32Window for image display and debugging 

In the ImageViewer library that is located within the ATD_Libraries repository there is a useful 

debug feature called BasicWin32Window. This function displays a FIBITMAP that you pass to 

it and it also displays useful debugging information about the image and its pixels. To use this 

function you must include the header BasicWin32Window.h You can then display an image with 

a function call to BasicWin32Window. 

Its prototype is: 
 

HWND BasicWin32Window(const char *title, int left, int top, int width, int height, FIBITMAP *dib); 

The tile parameter is used just to display in the titlebar of the window. The left, top, width, height 

parameters are for positioning absolutely on the screen. The final parameter is the image you 

wish to display. This function returns a handle to the window. So far this only has the one use of 

being passed to the function  
 
BasicWin32Window_SetPalette(HWND hwnd, RGBQUAD *palette); 
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This function assigns a palette to this particular window so each loaded indexed image will be 

displayed using this palette. 
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